$4110 / 23$
MATHEZO50A Tectovial
announcements:
HW2 due 10/0

- Midterm1 is on 11/10 (start at 8:30am - 10:00 ant), Tetorial mill be on Friday 13/10 stat of $9: 30 \mathrm{am}$ in HEGO4.
Recap Linits
Def: Let $\left\{a_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{R}$ be a sequence, We say $\left\{a_{n}\right\}$ converges to $a \in \mathbb{R}$
(Wite: $a_{n} \rightarrow a$ as $n \rightarrow \infty, a_{n} \xrightarrow{n \rightarrow \infty} a, \lim _{n \rightarrow \infty} a_{n}=a$)
if $\forall \varepsilon>0, \exists N_{n}(\varepsilon) \in N$ s.t. formll $n \geqslant N,\left|a_{n}-a\right|<\varepsilon$.

Fact: $\lim _{n \rightarrow \infty} \frac{1}{n}=0 \quad\left(A P\right.$: can aluays fid $N \in \mathbb{N}$ s.t. $N>\frac{1}{\varepsilon}$.).

General Strategy for proving a limit:

1) let $\varepsilon>0$ adoitray.
2) Guess/Hanc a candidate for what the lint is, a.
3) Find a good estimate $\left|a_{n}-a\right|$.

- using ordinary inequalities, triangle mequality, \cdots

4) Using (3), determine $N(\varepsilon)$.
5) Verify thant $N(\varepsilon)$ woks.

Q1: Use E-def'n of linst to show
a) $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=0$
b) $\lim _{n \rightarrow \infty} \frac{u^{2}-1}{2 x^{2}+3}=\frac{1}{2}$.

Pf: (u) let $\varepsilon>0$ be given.

$$
\left|\frac{n}{u^{2}+1}\right|<\left|\frac{n}{n^{2}}\right|=\frac{1}{u} \quad \text { By } A P, \exists N \in N \text { st } N>\frac{1}{\varepsilon} \text {. }
$$

we here $\left|\frac{n}{n^{2}+1}\right|<\left|\frac{1}{n}\right|<\left|\frac{1}{1 / 2}\right|=\varepsilon$. as requied/.
(b): let $\Sigma>0$ begmèn.

$$
\left|\frac{n^{2}-1}{2 n^{2}+3}-\frac{1}{2}\right|=\left|\frac{2 n^{2}-2}{4 n^{2}+6}-\frac{2 n^{2}+3}{4 n^{2}+6}\right|=\left|\frac{-5}{4 n^{2}+6}\right|=\frac{5}{4 n^{2}+6}<\frac{5}{4 n^{2}}
$$

So for $N>\sqrt{\frac{5}{4 \varepsilon}}$ Then for all $n \geq N$, we have

$$
\left|\frac{u^{2}-1}{2 u^{2}+3}-\frac{1}{2}\right|<\frac{5}{4 u^{2}}<\frac{5}{4\left(\sqrt{\frac{5}{4 \varepsilon}}\right)^{2}}=\frac{5}{4} \cdot \frac{4 \varepsilon}{5}=\varepsilon
$$

$\frac{5}{4 n^{2}}<\frac{5}{4 n}$, then take $N>\frac{5}{4 \varepsilon}<N$ ned not be unique i for $n>1$

Q2: Prove the at if $\lim _{n \rightarrow \infty} x_{n}=x$ and $x>0$, then $\exists m \in \mathbb{N}$ s.t. $\forall n \geqslant m$,

$$
x_{n}>0 .
$$

Pf: $\lim _{n \rightarrow \infty} x_{n}=x$ means $\forall \varepsilon>0, \exists N(\varepsilon) \in N$ s.t. $\forall n \geqslant N$ with $\left|x_{n}-x\right|<\varepsilon$.
So take $\varepsilon=\frac{x}{2}$.
Then $\exists N$ set. $\forall n \geqslant N$,

$$
\left|x_{n}-x\right|<\frac{x}{2} \Rightarrow \quad x_{n}-x<\frac{x}{2} \quad \begin{gathered}
n-x_{n}<\frac{x}{2} \Rightarrow x_{n}>\frac{x}{2}>0
\end{gathered}
$$

I took $\varepsilon=x+1$

Q3: Prove $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$ does notconverge.
" x_{n} does not converge to x " if $\exists \varepsilon_{0}>0$ st. $\forall N \in \mathbb{N ,} \exists n \geqslant N$ st. x_{n} satifies

$$
\left|x_{n}-x\right| \geqslant \varepsilon_{0}
$$

Pf: let $x \in \mathbb{R}$ be given, $\varepsilon_{0}=1$ let $N \in \mathbb{N}$ be grum.
If $x \leqslant 0$, then tale $n=2 k$ for some $k \in \mathbb{N}$ sit. $k \geqslant \frac{N}{2}$.

Then $\left|(-1)^{2 k}-x\right|=|1-x| \geq 1=\varepsilon_{0}$.
since $x \leqslant 0$.
If $x>0$, then take $u=2 k+1$ for some $k>\frac{N}{2}$.
Then $\left|(-1)^{2 k+1}-x\right|=|-1-x|=1+x>1=\varepsilon_{0}$

Idea: sequence has tho subsequences with distinct limits
"Lint exists \Rightarrow all subsequences converge ts the save limit:"
$\Leftrightarrow \backslash$ "trosubsequence loot converge to the same value $\Rightarrow \operatorname{lin} i f$ does not exit" tale corroapostive

